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Abstract. We present a study of electronic behaviours in the k-component Fibonacci (KCF)
quantum waveguides, in which k different incommensurate intervals are arranged according to a
substitution rule. On the basis of the transfer matrix method, the quantum transmission properties
of the KCF stub structures are obtained. It is shown that the transmission coefficient depends on the
wavevector of the electron and the number of different incommensurate intervals k. For the KCF
waveguides with the same k, on increasing the number of stubs, the minima in transmission extend
gradually into the band gap over which the transmission is blocked. Meanwhile more transmission
peaks appear. For finite KCF stub structures, on increasing the number of different incommensurate
intervals k, the total transmission over the spectral region of interest decreases gradually and the
width of the electronic band gap is enlarged. Moreover, when the value of k is large enough, the
transmission is basically shut off, except at a few energies where resonant tunnelling takes place.
These properties make it possible to use this kind of KCF waveguide as a switching device for digital
applications. On the other hand, the charge-density distributions in these structures are singularly
continuous. We propose that they can be analysed using a multifractal concept. A dimensional
spectrum of singularities associated with the charge density, f (α), demonstrates that the electronic
transport in the KCF waveguide presents scaling properties; hence the charge-density distribution
shows a genuine multifractality.

1. Introduction

Recently considerable interest has been shown in mesoscopic systems [1–14], in which electron
transport is governed by quantum mechanics rather than classical electrodynamics. Due to the
fact that the characteristic size in a mesoscopic system is smaller than the phase coherence
length of an electron, and of the same order as the de Broglie wavelength, quantization of the
transverse motion becomes an important issue. A variety of interesting interference phenomena
have been exhibited, such as the quantized conductance in point contacts, persistent currents in
metallic loops, universal conductance fluctuation, and Coulomb blockade, which has opened
up a completely new branch of device physics and mesoscopic physics [12]. In particular,
the electron motion is ballistic or quasiballistic at low temperatures, the electronic transport is
identical to the microwave propagation through a waveguide, and the allowed modes in these
structures are considered to be waveguide modes. Considering a quantum analogue of well-
known microwave or optical devices, these electronic properties of the mesoscopic systems
may have potential applications in quantum interference devices [5, 15, 16].

In the past decade, several studies [6–14] have been reported on one-dimensional (1D)
quantum waveguide structures, such as a T-shape device consisting of a main wire attached to
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a stub perpendicular to the wire. It has been proposed theoretically [6, 7] that a semiconductor
stub structure exhibits a transistor function. In particular, for the case of one-channel T-shape
structures, the transmission oscillates between zero and one, and results similar to those for
waveguides resonantly coupled to a cavity have been achieved [8, 9]. On the other hand, the
waveguide characteristics of electron transport through a wide–narrow–wide structure have
also been observed in experiments by the splitting-gate technique [17, 18]. More recently, Xia
[19] proposed a simple 1D waveguide theory for a quantum wire with one or two stubs. Singha
Deo and Jayannavar [12] extended it to a multiple-serial-stub structure and demonstrated how
a single defect in a periodic system modifies the band properties nontrivially. In addition,
the electron waveguide with side-branch structures also shows some novel transmission
characteristics [13]. Now that the electron behaviours in quantum waveguides are known
to depend critically upon the geometric structure, it is interesting to investigate the electron
transport in quantum waveguides with various configurations, such as periodic, quasiperiodic,
and even other aperiodic structures.

One of the well-known examples in one-dimensional (1D) quasiperiodic systems is the
Fibonacci sequence. The Fibonacci sequence can be produced by repeating the substitution
rules A → AB and B → A, in which the ratio of the numbers of the two incommensurate
intervals A and B is equal to the golden mean τ = (

√
5 + 1)/2. Since Merlin et al reported the

first realization of Fibonacci superlattices [20], much attention has been paid to the exotic wave
phenomena of Fibonacci systems in x-ray scattering spectra [20–22], Raman scattering spectra
[23, 24], optical transmission spectra [25–28], and in propagation modes of acoustic waves
on corrugated surfaces [29, 30]. However, only a few studies [14] have been devoted to the
electronic transport through quasiperiodic quantum waveguides. To the best of our knowledge,
there seems to have been no work on the quantum waveguide with 1D aperiodic structure which
contains more than two incommensurate intervals, although its structural character and other
physical properties have become known [31–35].

In this paper, we present the electronic transport in serial-stub waveguides arranged
in k-component Fibonacci (KCF) sequences, which contain k incommensurate intervals Ai

(i = 1, 2, . . . , k) and can be generated by the substitution rules

A1 → A1Ak

Ak → Ak−1

...

Ai → Ai−1

...

A2 → A1.

With a transfer matrix method, the electronic transport through the KCF quantum waveguides
is calculated. For KCF quantum waveguides with the same k, on increasing the number of
stubs, the minima in transmission become extended gradually into band gaps over which
the transmission is blocked. Meanwhile, more transmission peaks appear. For a series
of finite KCF waveguides, on increasing the number of different incommensurate intervals
k, the total transmission over the spectral region of interest decreases gradually and the
width of the electronic band gap (transmission zero) is enlarged. On the other hand, the
charge-density distributions in these structures are singularly continuous and are analysed
using a multifractal concept. It is known that multifractal analysis is a suitable statistical
description of the long-term dynamical behaviour of a physical system [36, 37]. The multi-
fractal formalism relies on the nonuniformity of the system. Generally for ‘strongly’ disordered
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systems with exponentially decaying correlations, the wavefunctions themselves manifest
multifractal properties [38, 39]; Fibonacci chains represent in a sense ‘weakly’ disordered
systems. Our investigation demonstrates that in the KCF quantum waveguides, the charge-
density distributions present scaling properties of multifractality, too.

2. The theoretical model

The k-component Fibonacci structures (KCFS) are defined as follows. Consider the sub-
stitution S acting on an alphabet of k elements A1, A2, . . . , Ai , . . . , Ak according to the
following rule:

S




A1 → A1Ak

Ak → Ak−1
...

Ai → Ai−1
...

A2 → A1



.

Thereafter, these k elements are arranged in a KCF sequence. For example, the three-
component Fibonacci structure (k = 3) consists of three kinds of element A1, A2, and A3. On
the basis of the substitution rules S: A1 → A1A3, A3 → A2, and A2 → A1, these three kinds
of element are sequenced as A1A3A2A1A1A3A1A3A2 · · ·. On the other hand, the KCFS can
also be described as a limit of the generations of the sequence C(k)

n . Let C(k)
n = SnA1; thus

C
(k)
0 = A1

C
(k)
1 = A1Ak

C
(k)
2 = A1AkAk−1

...

C
(k)
k−1 = A1AkAk−1 · · ·A3A2

and in general

C(k)
n = C

(k)
n−1 + C

(k)
n−k (if n > k).

Define the number of elements in the generation C(k)
n as F (k)

n . It follows that F (k)
n satisfies

F (k)
n = F

(k)
n−1 + F

(k)
n−k with Fi = i + 1 (i = 0, 1, . . . , k − 1). We denote the number of Ai

(i = 1, 2, . . . , k) in C(k)
n as N(k)

n (Ai). The ratios of these numbers are defined as

ηi = lim
n→∞[N(k)

n (Ai)/N
(k)
n (A1)].

It turns out that the set {ηi} satisfies

ηkk + ηk = 1

1:ηk = ηk:ηk−1 = · · · = ηi :ηi−1 = · · · = η3:η2.
(1)

Therefore all of these ratios ηi = ηk−i+1
k (1 < i � k) are irrational numbers between zero and

unity except η1 = 1. It has been proven [31] that the KCFS are quasiperiodic when 1 < k � 5;
while for k > 5, the KCFS are nonquasiperiodic, but they are still ordered.

The system that we study here is that of the k-component Fibonacci (KCF) quantum
waveguides, where the quantum wire is attached by a series of stubs perpendicular to it (as
shown in figure 1). The model of the KCFS with elementsA1,A2, . . . ,Ai , . . . ,Ak is associated
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za1=lA1 a2=lA2 aja3=lA3
aN

b2=lA2

bj

bN
b3=lA3

b1=lA1

Figure 1. A schematic KCF stub structure. aj and bj are the lengths of the j th wire segment and
the j th stub, respectively. These lengths aj and bj are arranged according to the KCF sequence

C
(k)
n . For example, if k = 3, i.e., in the 3CF stub structure, there are three kinds of length lA1 , lA2 ,

and lA3 , which are arranged as A1A3A2A1A1A3A1 · · ·. Thereafter, the lengths of the stubs will
successively be b1 = lA1 , b2 = lA3 , b3 = lA2 , b4 = lA1 , . . .. And the situation is similar for the
wire segments.

with k kinds of real length lA1 , lA2 , . . . , lAk
. We suppose that in the KCF waveguides, both

the wire segments and the stubs consist of these k lengths (lA1 , lA2 , . . . , lAk
). In the wire

segments, the lengths are chosen successively according to the KCF sequence, and the same
is true of the stubs. Let the wire segments with stubs be labelled sequentially with positive
integer j from left to right, while aj and bj are the lengths of the j th wire segment and the
j th stub, respectively (shown in figure 1). For example, if k = 3, i.e., in the 3CF waveguide,
there should be three different lengths lA1 , lA2 , lA3 which are arranged as the 3CF sequence
(A1A3A2A1A1A3A1A3A2 · · ·). Thereafter, the lengths of stubs will successively be b1 = lA1 ,
b2 = lA3 , b3 = lA2 , b4 = lA1 , b5 = lA1 , . . .. And there are similar situations for the wire
segments (a1 = lA1 , a2 = lA3 , a3 = lA2 , a4 = lA1 , . . .). Now consider electron transport in the
KCF waveguides. We assume that the width of the structure is narrow enough compared to the
length of the structure. It follows that the system can be regarded as quasi-one-dimensional
and retains quantum interference. In any segment or stub, an electron is free-particle-like.
When the electron with energy ε = h̄2q2/2m (where q is the wavevector) is injected from one
side, it can pass through the structure ballistically provided that the continuum conditions are
satisfied.

Suppose that the electronic wavefunctions in the j th segment and j th stub are plane-
wave-like: ψj(z) = gj exp(iqz) + hj exp(−iqz) and ϕj (z) = uj exp(iqz) + vj exp(−iqz),
respectively. A local coordinate is chosen for each segment and stub. For the segment, its
origin is positioned at the left-hand side of the segment; while for each stub, the origin is
positioned at the lower end of the stub. The upper end of each stub in figure 1 is assumed
to be rigid under the external gate voltage. Using the Griffiths boundary condition at the
intersections, the electronic amplitudes in the (j + 1)th segment can be obtained from those in
the j th segment as follows [14]:(

gj+1

hj+1

)
= Sj+1,j

(
gj
hj

)
. (2)

The transfer matrix Sj+1,j has the form

Sj+1,j =




1 − i

2
cot(qbj ) − i

2
cot(qbj )

i

2
cot(qbj ) 1 +

i

2
cot(qbj )




(
eiqaj 0

0 e−iqaj

)
(3)

where aj and bj are the lengths of the wire segment and stub, respectively. In order to get
a transfer matrix with components that are real functions, the amplitudes are transformed as
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follows: (
gj
hj

)
=

(
1 i
1 −i

) (
αj
βj

)
. (4)

Thereafter, Sj+1,j is transformed into Tj+1,j for a new set of amplitudes (αj , βj ), which satisfies(
αj+1

βj+1

)
= Tj+1,j

(
αj
βj

)
(5)

and the new transfer matrix Tj+1,j can be written as

Tj+1,j =
(

1 0
− cot(qbj ) 1

) (
cos(qaj ) − sin(qaj )
sin(qaj ) cos(qaj )

)
. (6)

If the lengths of all segments and stubs and the initial values of the amplitudes (α1, β1) are
known, the amplitudes along the quantum wire can be obtained recursively from(

αj+1

βj+1

)
= M(j)

(
α1

β1

)
(7)

where

M(j) =
j∏
i=1

Ti+1,i .

For the KCF waveguides in which the lengths of segments and stubs are ordered as the
generation C(k)

n , the corresponding transfer matrix takes the form

M(k)
n = M

(k)
n−kM

(k)
n−1 (8)

where

M
(k)
0 = T

(k)
1 = I

M
(k)
1 = T

(k)
k,1 T

(k)
1

M
(k)
2 = T

(k)
k−1,kT

(k)
k,1 T

(k)
1

...

M
(k)
k−1 = T

(k)
2,3 T

(k)
3,4 · · · T (k)

k−1,kT
(k)
k,1 T

(k)
1 .

Therefore many important quantities in the KCF waveguides can be readily derived from
equations (6)–(8). From the global transfer matrix M(k)

n = M , the reflection amplitude and
the transmission coefficient can be written as [40]

R[C(k)
n ] = − 1

2 + Tr(M∗M)
[(M2

11 −M2
12 + M2

21 −M2
22)− 2i(M11M12 + M21M22)] (9)

and

T [C(k)
n ] = 4

Tr(M∗M) + 2
(10)

respectively. M11, M12, M21, and M22 are the four elements of M(k)
n = M . On the other hand,

the charge density in the j th segment of the waveguides is determined by∣∣ψj(z)
∣∣2 = ∣∣Aje−iqz + Bje−iqz

∣∣2

= 4
∣∣αj ∣∣2

cos2(qz) + 4
∣∣βj ∣∣2

sin2(qz)− 2(α∗
j βj + αjβ

∗
j ) sin(2qz) (11)

In fact, the incident electron of the system is described by eiqz; thus the initial amplitudes are
α1 = (1 + R)/2 and β1 = (1 − R)/2i. The system becomes deterministic; therefore, the
electron transport through the KCF quantum waveguide is determined by equations (8)–(11).
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3. Electronic transmission spectra for the KCF waveguides

On the basis of equations (8)–(11), the electron transmission through the KCF waveguides can
be calculated. As we mentioned in section 2, in the KCF stub waveguide, k different lengths
lA1 , lA2 , . . . , lAk

are arranged in both the wire segments and the stubs according to the KCF
sequenceC(k)

n (as shown in figure 1). We consider the simplest setting to illustrate the physical
effect of the geometrical structures. Choose lA1 = 1 and lAi

= ηi (i = 2, 3, . . . , k), where ηi
can be given by equation (1).

A series of electron transmission spectra of the KCF waveguides have been studied by
increasing the number of stubs and by varying the number of incommensurate intervals k.
As an example, figure 2 gives the transmission coefficient T as a function of the wavevector
q in the interval (0, π ] for the three-component Fibonacci waveguides (k = 3) with the
generations C

(3)
7 , C(3)

9 , C(3)
11 , C(3)

13 . The three different intervals {Ai} (i = 1, 2, 3) are
lA1 = 1, lA2 = 0.465 571, lA3 = 0.682 328, respectively. It is clear that in the case of a
very small number of stubs, there is no total reflection, although there exist some regions of
minimum transmission. When the number of stubs becomes large, the minima in transmission
become extended gradually into the band gap where the transmission is blocked. Generally, on
increasing the number of stubs in the waveguide, more and more transmission zones diminish

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.0

0.2

0.4

0.6

0.8
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Figure 2. The transmission coefficient T as a function of the wavevector q for the three-component
Fibonacci structures with the following generations and numbers of stubs: (a) C(3)

7 and N = 13;

(b) C(3)
9 and N = 28; (c) C(3)

11 and N = 60; (d) C(3)
13 and N = 129.
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gradually, and some of them approach zero transmission. In this way, a one-dimensional
electronic band gap is realized. To explain this feature quantitatively, we define an ‘average
transmission’ as

〈T 〉ave = 1

π

∫ π

0
T (q) dq. (12)

It follows that the ‘average transmissions’ of figures 2(a)–2(d) are 〈T 〉ave ∼= 0.153, 0.0875,
0.0467, 0.0216, respectively. Therefore the total transmission over the spectral region of
interest definitely decreases when the number of stubs in the KCF waveguides (k is fixed)
increases due to the appearance of electronic band gaps. Meanwhile, more transmission peaks
emerge. Most interestingly, some transmission peaks locate in between the band gaps. This
property suggests potential applications in quantum interference devices.

It is enlightening to compare the behaviours of the electron transport through KCF
waveguides with different numbers of incommensurate intervals k. The calculations are
performed on the transmission of different KCF waveguides with almost identical numbers
of stubs. Figure 3 illustrates the transmission coefficient T as a function of the wavevector
q for four KCF waveguides with different k. It can be seen that on increasing k, the band
gaps are easily observed. Meanwhile the ‘average transmission’ defined by equation (12)

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.0

0.2

0.4

0.6

0.8

1.0(d)(c)

(b)(a)

k=5

T

q/π
0.3 0.4 0.5 0.6 0.7 0.8 0.9
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T

q/π
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T

q/π
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0.6
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k=2

T

q/π

Figure 3. The transmission coefficient T as a function of the wavevector q for the k-component
Fibonacci structures with different numbers of incommensurate intervals k. The values of k, the
generations, and the numbers of stubs N are as follows: (a) k = 2, C(2)

12 , and N = 233; (b) k = 3,

C
(3)
15 , and N = 277; (c) k = 4, C(4)

17 , and N = 250; (d) k = 5, C(5)
19 , and N = 245.
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varied as 〈T 〉ave ∼= 1.03 × 10−1, 1.07 × 10−2, 4.94 × 10−3, and 8.17 × 10−5 corresponding to
figures 3(a)–3(d), respectively. It follows that the total transmission over the spectral region
decreases gradually and much wider band gaps appear when k increases in the KCF waveguides.
Moreover, when the value of k is sufficiently large, the transmission is basically shut off,
except at a few energies where resonant tunnelling takes place. It seems that if we consider the
KCF waveguides for discrete logic applications, sufficient noise margins and sharp transitions
between logic levels might be more easily achieved, due to the fact that the ‘on’ and ‘off’ states
are evident enough as shown in figure 3(c) and 3(d). From this point of view, we suggest that the
KCF structure might be a good candidate for use in the structural design of high-performance
quantum devices for digital applications.

4. The charge-density distributions in the KCF waveguides and their scaling properties

The charge-density distributions in the KCF waveguides can be obtained from equation (11).
Generally they are aperiodic and inhomogeneous. In order to compare the distributions
in different KCF waveguides, we consider the charge density corresponding to the largest
electronic transmission in the KCF waveguides. Figures 4(a)–4(d) illustrate the charge-
density distributions with the same parameters as for figures 3(a)–3(d). For example, the
charge-density distribution in figure 4(a) corresponds to the largest transmission in the 2CF
waveguide (k = 2), where the wavevector q = 0.805 46π and the transmission coefficient
T = 0.999 79. It is shown that these different transmission probabilities designate statistical
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Figure 4. The charge-density distributions of the KCF waveguides with the same parameters as
for figure 3. (a) k = 2, q = 0.805 46π , T = 0.999 79; (b) k = 3, q = 0.404 84π , T = 0.993 95;
(c) k = 4, q = 0.701 11π , T = 0.999 96; (d) k = 5, q = 0.634 45π , T = 0.367 91.
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self-similar behaviours. As k increases, the statistical behaviours change rapidly and become
rather complicated (as shown in figures 4(b)–4(d)). In fact, the charge-density distributions
in figure 4 are neither discrete nor absolutely continuous. These complicated spectra can be
characterized by the multifractal concept.

Multifractal analysis is a tool for characterizing the nature of a positive measure in a
statistical sense [41–44]. If a positive measure is expressed by boxes of size ε and the probability
pi(ε) in the ith box, an exponent (singularity strength) αi can be defined as

pi(ε) ∼ εαi . (13)

If we count the number of boxes N(α) dα where the probability pi has singularity strength
between α and α + dα, then f (α) can be loosely defined as the fractal dimension of the set of
boxes with singularity strength α. That is

N(α) dα ∼ ε−f (α) dα. (14)

The f (α) singularity spectrum provides a mathematically precise and intuitive description of
the nonuniform system.

In the case of electronic transmission probability distributions, the charge density is a
positive quantity in the space. A straightforward application of the multifractal formalism
requires the evaluation of an exact integral of the measure of the structures with infinite length
over a small segment of length in the space. In this case, the computer time required for
the calculation will increase incredibly. To solve this problem, an approximate scheme is
chosen [44]. Instead of performing calculations for the infinite KCF waveguide, we only
deal with a structure which contains repeating copies of the finite generation, i.e., C(k)

n , of the
original structure. It is known that the transmission of a periodic waveguide is also periodic.
Therefore we need only consider the situation in one period of space. The essential ingredient
in multifractal characterization is the probability weights pi . In our case, pi is defined as the
weight of the charge density in the density spectrum, i.e.,

pi = |ψ(zi)|2
/( N∑

i=1

|ψ(zi)|2
)

(15)

where ψi is the charge density (shown in equation (11)) with the position zi = Di/N

(i = 1, 2, . . . , N), D is the total length of the wire segments in the KCF waveguide, and
N is the number of times that the copying is performed. The partition function can then be
expressed as

Z(Q) =
N∑
i=1

p
Q
i

Z′(Q) = dZ

dQ
=

N∑
i=1

p
Q
i lnpi

Z′′(Q) = d2Z

d2Q
=

N∑
i=1

p
Q
i (lnpi)

2

(16)

where the parameterQ provides a ‘microscope’ for exploring the singular measure in different
regions. For Q > 1, Z(Q) amplifies the more singular regions of pi , while for Q < 1 it
accentuates the less singular regions. For Q = 1 the measure Z(1) replicates the original
measure. The f (α) curve of any finite sample is therefore available at a local level, i.e., for a
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given phase space. The values of α and f (α) are given by

α = − Z′(Q)

Z(Q) lnN

f (α) = 1

lnN

(
lnZ(Q)− QZ′(Q)

Z(Q)

)
.

(17)

In order to illustrate the multifractality of the charge-density distributions of the KCF
waveguides shown in figures 4(a)–4(d), we calculate the corresponding f (α) spectra (shown
in figure 5) according to equations (15)–(17). In figure 5, the data points fit perfectly onto a
smooth curve, which is a characteristic feature of an infinite structure. The quantity f (α) is
the dimension of the set of positions zi in the charge-density spectrum. In particular, we are
interested in the physical meanings in the f (α) spectrum of a density measure:

(i) The abscissa α0 of the summit of the f (α) curve, which corresponds to Q = 0, is
the strength of a generic singularity. In some senses, the exponent α0 characterizes the
behaviour of the density at a generic singularity. Obviously f (α0) = D0 = 1, which
means that the support of the density is the whole z-axis.

(ii) For Q = 1, f (α(1)) = α(1) = D1; D1 is the information dimension of the density
measure:

D1 = lim
ε→0

[(
−

∑
i

pi(ε) lnpi(ε)

)/
(ln(1/ε))

]

where −pi(ε) ln(pi(ε)) is an expression from information theory and corresponds to the
amount of information associated with the distribution of pi(ε) values. The distance of
D1 from unity is a faithful measure of how singular the density measure is. Figure 5 shows
that the information dimension D1 in the KCFS is less than the dimension of the support
D0, i.e., D1 < D0 = 1. So the charge-density distribution of the KCF waveguides is
definitely a fractal measure.

(iii) The extremes αmin and αmax of the abscissa of a f (α) curve represent the minimum and
the maximum of the singularity exponent α which acts as an appropriate weight in phase
space. In fact, αmin and αmax characterize the scaling properties of the most concentrated
and most rarefied regions of the density measure respectively. On increasing of the number
of incommensurate intervals k in the KCF waveguides, the value 0α = αmax − αmin also
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Figure 5. f (α) spectra for the charge-density distributions of the KCF waveguides where k = 2,
3, 4, 5.
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increases gradually. This implies that the charge-density measure of the KCF waveguides
approaches the behaviour of a random system when k increases.

(iv) The dimension of the set of transmission peaks dp = f (1), corresponding to α = 1. dp
represents the dimension of the set of positions z for which the local singularity exponent α
is less than unity. In figure 5 we have dp < 1. This further confirms that the charge-density
spectrum of the KCF waveguide is definitely a fractal measure.

The above scaling analysis indicates that the charge-density distributions of the KCF
waveguides are singularly continuous and possess multifractality. Different KCF waveguides
exhibit different electronic transport probability distributions.

5. Conclusions

We have presented the electronic transmission through k-component Fibonacci (KCF)
waveguides, which contain k different incommensurate intervals and can be generated by
a substitution rule. The transmission spectra have been obtained by a transfer matrix method.
It has been demonstrated that the transmission coefficient has a rich structure. For the KCF
waveguides with a fixed k, the electron can be localized and the band gap appears when the
number of stubs becomes sufficiently large. On increasing k, the width of the electronic band
gap enlarges, while for a sufficiently large k, the transmission is basically shut off, except
at a few energies where resonant tunnelling takes place. These interesting features make the
KCF structure a possible candidate for use in high-performance quantum devices. On the other
hand, the charge-density distributions in the KCF waveguides are neither discrete nor absolutely
continuous. Multifractal analysis reveals that these density measures can be characterized by
a dimension spectrum of singularities f (α). The f (α) spectrum is a smooth function with a
summit of D1 < D0 = 1. The charge-density measure does not have an absolutely continuous
component. Therefore the electronic transport through the KCF waveguides (2 � k � 5) is
singularly continuous and possesses multifractal properties.
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